當(dāng)前位置:深圳摩方新材科技有限公司>>技術(shù)文章展示
您好, 歡迎來(lái)到化工儀器網(wǎng)! 登錄| 免費(fèi)注冊(cè)| 產(chǎn)品展廳| 收藏商鋪|
當(dāng)前位置:深圳摩方新材科技有限公司>>技術(shù)文章展示
2024
08-02頂刊《Science》:仿南洋杉3D毛細(xì)鋸齒結(jié)構(gòu)表面流體自主擇向
香港城市大學(xué)王鉆開(kāi)教授及其合作者借鑒南洋杉葉片多重懸臂結(jié)構(gòu)特征,制備了仿南洋杉3D毛細(xì)鋸齒結(jié)構(gòu)表面,通過(guò)建立3D固/液界面交互作用,實(shí)現(xiàn)流體運(yùn)動(dòng)方向的自主選擇。研究者借鑒南洋杉葉片結(jié)構(gòu)特征,使用摩方精密PμSL3D打印技術(shù)(nanoArch®S140,精度:10μm),設(shè)計(jì)并制備了由平行排列的具有橫向和縱向曲率的雙重懸臂結(jié)構(gòu)的鋸齒陣列組成的仿南洋杉3D毛細(xì)鋸齒結(jié)構(gòu)表面、具有對(duì)稱垂直平面葉片結(jié)構(gòu)的表面、具有傾斜平面葉片結(jié)構(gòu)的表面和具有平行溝槽結(jié)構(gòu)的表面。2024
08-02香港大學(xué)《Advanced Science》: 可重構(gòu)多級(jí)整流器用于三維液體操控
在微尺度下,可控液體操控技術(shù)廣泛應(yīng)用于各類生命系統(tǒng)和工程領(lǐng)域。研究人員通過(guò)界面科學(xué)理論和生物學(xué)的啟發(fā),利用精密加工和開(kāi)發(fā)智能材料,在近二十年間提出了一系列的液體操控技術(shù),滿足了微流控、生化分析等領(lǐng)域?qū)芊€(wěn)定的液體操作需求。當(dāng)前的技術(shù)思路主要分為兩類:第一類是利用無(wú)需能量輸入的被動(dòng)靜態(tài)結(jié)構(gòu)來(lái)調(diào)控液體動(dòng)力學(xué),如豬籠草上的定向液體輸運(yùn)和蛛網(wǎng)結(jié)構(gòu)的集水現(xiàn)象;第二類是通過(guò)引入動(dòng)態(tài)外部場(chǎng)來(lái)實(shí)現(xiàn)復(fù)雜可調(diào)的液體行為,如利用電場(chǎng)、磁場(chǎng)、聲場(chǎng)等對(duì)液體進(jìn)行主動(dòng)調(diào)控。當(dāng)下關(guān)鍵挑戰(zhàn)在于,如何構(gòu)建一種兼具被動(dòng)操作簡(jiǎn)單性和2024
08-01中國(guó)科學(xué)技術(shù)大學(xué)《CEJ》: 雙層給藥微針用于治療感染傷口
皮膚和軟組織感染十分常見(jiàn),特別是在抗生素難以滲透的深層組織中,細(xì)菌能夠形成生物膜,這使得它們更難對(duì)抗生素產(chǎn)生反應(yīng)。為了克服這一問(wèn)題,聯(lián)合治療策略備受關(guān)注。多粘菌素B(PB)和姜黃素(CUR)的聯(lián)合治療顯示出系統(tǒng)性細(xì)菌生長(zhǎng)抑制效果。然而,目前面臨的主要挑戰(zhàn)包括制造可分離微針的材料局限性、環(huán)境因素對(duì)微針的影響和藥物輸送機(jī)制。通過(guò)技術(shù)優(yōu)化來(lái)克服這些挑戰(zhàn),將為深層皮膚感染的治療提供新路徑,從而有望改善全球健康狀況和抗生素耐藥性問(wèn)題。針對(duì)以上問(wèn)題,中國(guó)科學(xué)技術(shù)大學(xué)精密機(jī)械與儀器系徐曉嶸教授、中國(guó)科學(xué)技術(shù)大2024
07-29軟材料結(jié)構(gòu)動(dòng)態(tài)形貌的調(diào)控方法,摩方助力實(shí)現(xiàn)多模態(tài)三維形貌的動(dòng)態(tài)可控變換
香港中文大學(xué)張立教授團(tuán)隊(duì)與哈爾濱工業(yè)大學(xué)(深圳)金東東副教授,聯(lián)合香港城市大學(xué)張甲晨教授、中國(guó)科學(xué)技術(shù)大學(xué)王柳教授,提出了一種新型的軟材料結(jié)構(gòu)動(dòng)態(tài)形貌調(diào)控方法。該團(tuán)隊(duì)結(jié)合硬磁性顆粒與彈性體制備得到磁性彈性體,并使其在一端受限的條件下溶脹產(chǎn)生可控的屈曲結(jié)構(gòu),接著加以磁化形成各向異性的三維磁疇分布。得到的磁性彈性體在外界可編程磁場(chǎng)的驅(qū)動(dòng)下,能夠?qū)崿F(xiàn)多模態(tài)三維形貌的動(dòng)態(tài)可控變換,在微流體操縱、軟體機(jī)器人等領(lǐng)域中具有廣闊的應(yīng)用前景。團(tuán)隊(duì)通過(guò)利用各式屈曲變形產(chǎn)生的不同微流體行為(如定向流體、混合流體、渦流2024
07-29華科大:超分子3D打印策略實(shí)現(xiàn)可修復(fù)、可回收的3D結(jié)構(gòu)色物體的一步構(gòu)筑
具有3D幾何形狀的結(jié)構(gòu)色物體在光學(xué)設(shè)備、傳感、定制化裝飾等領(lǐng)域具有廣泛的應(yīng)用前景。目前3D結(jié)構(gòu)色物體的制備流程繁瑣,成型后通常需求后處理產(chǎn)生結(jié)構(gòu)色。一步實(shí)現(xiàn)結(jié)構(gòu)色的直接生成和三維結(jié)構(gòu)的成型仍存在挑戰(zhàn)。近期,華中科技大學(xué)化學(xué)與化工學(xué)院朱錦濤、張連斌教授團(tuán)隊(duì)在3D結(jié)構(gòu)色物體制備方面取得了進(jìn)展。他們提出了一種通過(guò)墨水直寫打印(DirectInkWriting,DIW)的方式,將由膠體粒子與聚合物組成的超分子膠體復(fù)合物直接打印一步構(gòu)筑具有3D結(jié)構(gòu)的結(jié)構(gòu)色物體的方法(圖1)。該研究中,動(dòng)態(tài)可逆的超分子相互2024
07-24名古屋、東京大學(xué)等:雙泵探針與微流控芯片集成,用于測(cè)量單細(xì)胞瞬態(tài)響應(yīng)
集成微流控芯片技術(shù)在生物醫(yī)學(xué)和生物物理學(xué)領(lǐng)域展現(xiàn)了巨大的潛力,它能夠?qū)崿F(xiàn)細(xì)胞分離、捕獲以及檢測(cè)單細(xì)胞等多種功能。液體的交換和微流控芯片的集成也起著關(guān)鍵性作用,這使得研究者能夠精確調(diào)控細(xì)胞外環(huán)境,并同步刺激與檢測(cè)單個(gè)細(xì)胞,從而實(shí)時(shí)觀察到細(xì)胞響應(yīng)的細(xì)致與動(dòng)態(tài)變化。為了精確測(cè)量細(xì)胞在刺激下的瞬態(tài)反應(yīng),高速液體交換和精確的測(cè)量技術(shù)也變得至關(guān)重要。在本研究中,來(lái)自日本名古屋大學(xué)、東京大學(xué)和東北大學(xué)的團(tuán)隊(duì)研發(fā)了一種集成了微流控芯片和雙泵探針的系統(tǒng)來(lái)測(cè)量單個(gè)細(xì)胞瞬態(tài)響應(yīng)的新方法。該系統(tǒng)由雙泵探針、微流控芯片、2024
07-22海德堡大學(xué)新突破:3D打印支架經(jīng)熱解處理,為肌肉細(xì)胞培養(yǎng)提供新平臺(tái)
增材制造,通常被稱為3D打印,在組織工程領(lǐng)域因其能夠制造具有復(fù)雜三維和可定制幾何形狀的合成生物相容性支架而受到了顯著關(guān)注。這些支架能夠有效地支持細(xì)胞生長(zhǎng)和組織形成,其中材料擠出、材料噴射和槽式光聚合在內(nèi)的3D打印技術(shù)已被用于支架的制造。目前,生物打印技術(shù)可以直接3D打印細(xì)胞,這些細(xì)胞被嵌入水凝膠墨水中,能同時(shí)保持與解剖結(jié)構(gòu)相似的空間布局。盡管增材制造在支架制造方面取得了快速進(jìn)展,但仍存在一些挑戰(zhàn)。尤其是在單個(gè)制造模式中實(shí)現(xiàn)部件大小、打印分辨率、尺寸范圍、結(jié)構(gòu)穩(wěn)定性和生物相容性之間的平衡仍然難以實(shí)2024
07-19湖南大學(xué)《AM》綜述:3D打印骨組織工程智能支架的研究進(jìn)展
由嚴(yán)重創(chuàng)傷、手術(shù)切除、或先天畸形等導(dǎo)致的大段骨缺損的修復(fù)和功能重建是臨床面臨的重大挑戰(zhàn)。骨組織工程(BTE)在治療這些嚴(yán)重骨缺損方面具有巨大的潛力,可以緩解傳統(tǒng)自體或同種異體骨移植中常見(jiàn)的供體骨不足、供區(qū)壞死、二次傷害及嚴(yán)重免疫排斥等問(wèn)題。3D打印技術(shù)能在多尺度上控制BTE支架的結(jié)構(gòu),已被廣泛用于制造BTE仿生功能支架。與惰性和功能性骨支架相比,智能支架可以根據(jù)外源性和/或內(nèi)源性刺激產(chǎn)生定制或可控的治療效果,如促成骨、抗菌、抗腫瘤等功能。鑒于此,湖南大學(xué)朱偉/韓曉筱教授團(tuán)隊(duì)與新加坡南洋理工大學(xué)周2024
07-17香港科技大學(xué):識(shí)別材料柔軟度和種類的摩擦電雙模態(tài)觸覺(jué)傳感器
▲快速了解摩擦電雙模態(tài)觸覺(jué)傳感器最新研究成果皮膚通過(guò)種類豐富且分布廣泛的觸覺(jué)感受器,對(duì)外部環(huán)境進(jìn)行敏銳感知。隨著人工智能時(shí)代的興起,具備類似皮膚感知能力的電子觸覺(jué)系統(tǒng)備受關(guān)注,這種系統(tǒng)有望為機(jī)器人、假肢和執(zhí)行器等設(shè)備提供真實(shí)的觸覺(jué)感知。傳統(tǒng)觸覺(jué)傳感器可以測(cè)量壓力和溫度等信息,但無(wú)法獲取物體種類和柔軟度等其他觸覺(jué)維度的信息。傳統(tǒng)應(yīng)變傳感器在檢測(cè)物體柔軟度時(shí),由于其設(shè)計(jì)復(fù)雜且需要預(yù)設(shè)位移,這限制了其應(yīng)用范圍。因此,設(shè)計(jì)一種易于集成的觸覺(jué)傳感器,能夠同時(shí)提供材料類型、柔軟度和楊氏模量等信息,對(duì)推動(dòng)多模2024
07-15墨爾本大學(xué)《Small》:用于可拆卸微流體裝置的微聲全息圖
微流控技術(shù)已經(jīng)成為化學(xué)、納米科學(xué)和生物醫(yī)學(xué)領(lǐng)域的一個(gè)重要工具之一。相較于傳統(tǒng)的實(shí)驗(yàn)室技術(shù),微流控設(shè)備因其結(jié)構(gòu)緊湊、制造成本低、響應(yīng)速度快以及能夠精確控制微環(huán)境等優(yōu)勢(shì)而受到青睞。為了在微流控系統(tǒng)中實(shí)現(xiàn)微米級(jí)別的精準(zhǔn)操作,研究者們開(kāi)發(fā)了多種技術(shù)手段,如微夾具、電潤(rùn)濕技術(shù),以及磁光力和聲學(xué)力等。在這些技術(shù)中,聲學(xué)操控因其無(wú)需接觸、良好的生物相容性以及對(duì)細(xì)胞尺度操控的能力而被廣泛應(yīng)用于微流控設(shè)備中。在聲學(xué)微流控設(shè)備中,聲場(chǎng)通常形成壓力場(chǎng)模式,包括節(jié)線/反節(jié)線位置,并用于翻譯和圖案化液滴、顆粒和細(xì)胞。這些2024
07-12浙江大學(xué)《Nature》:可3D打印的彈性體,具有超高強(qiáng)度和韌性!
彈性體因其柔韌性和彈性廣泛應(yīng)用于汽車、建筑和消費(fèi)品等行業(yè),并在微流體、軟機(jī)器人、可穿戴電子設(shè)備和醫(yī)療設(shè)備等新興領(lǐng)域逐漸受到重視。機(jī)械強(qiáng)度是所有應(yīng)用的基本要求,因此如何兼顧柔軟性和強(qiáng)度一直是研究的重點(diǎn)。天然蜘蛛絲因其高強(qiáng)度為合成軟材料提供了靈感,盡管其超級(jí)結(jié)構(gòu)(β片)難以復(fù)制,但分層結(jié)構(gòu)設(shè)計(jì)為增強(qiáng)彈性體機(jī)械強(qiáng)度提供了思路。然而,這些設(shè)計(jì)原理不能直接應(yīng)用于需要快速光固化的數(shù)字光處理(DLP)三維打印。光敏樹(shù)脂通常含有大量的多功能丙烯酸酯或甲基丙烯酸酯,限制了分子設(shè)計(jì)的自由度,并導(dǎo)致網(wǎng)絡(luò)不均勻和殘余應(yīng)2024
07-08中南大學(xué)《Nano Letters》:微流控聲空化器件精準(zhǔn)調(diào)控脂質(zhì)體粒徑分布
脂質(zhì)體作為最有前景的藥物載體之一,可以改變藥物的藥代動(dòng)力學(xué)特性,延長(zhǎng)藥物的循環(huán)時(shí)間,減少藥物的毒副作用,已被廣泛應(yīng)用于抗腫瘤藥物遞送、基因治療、醫(yī)學(xué)成像等領(lǐng)域。值得注意的是,脂質(zhì)體的粒徑對(duì)于脂質(zhì)體在體內(nèi)的血液循環(huán)、細(xì)胞攝取和組織滲透等方面都發(fā)揮著重要作用,因此,對(duì)脂質(zhì)體藥物的藥效學(xué)和藥代動(dòng)力學(xué)產(chǎn)生重要的影響。目前,常見(jiàn)的脂質(zhì)體制備方法包括薄膜水化法、逆向蒸發(fā)法、乙醇注入法等,這些方法都難以在脂質(zhì)體形成的過(guò)程中對(duì)脂質(zhì)體的粒徑進(jìn)行直接的調(diào)控。傳統(tǒng)的后處理方法,如脂質(zhì)體擠出和超聲振蕩,雖然可以減小脂質(zhì)2024
07-05用于光學(xué)視網(wǎng)膜血管成像設(shè)備評(píng)估的視網(wǎng)膜多血管網(wǎng)絡(luò)模型的快速原型設(shè)計(jì)
在當(dāng)今醫(yī)療技術(shù)迅速發(fā)展的背景下,人們對(duì)視網(wǎng)膜血管健康的關(guān)注日益提升,因?yàn)檫@對(duì)保持健康視力非常重要。例如,高血壓性視網(wǎng)膜病、視網(wǎng)膜血管阻塞和糖尿病視網(wǎng)膜病等視網(wǎng)膜血管病變,都可導(dǎo)致視力喪失。而且,視網(wǎng)膜血管系統(tǒng)的變化更是被證明可以預(yù)測(cè)可能誘發(fā)的多種疾病。因此,準(zhǔn)確地映射視網(wǎng)膜血管系統(tǒng)已成為眼科診斷的一個(gè)關(guān)鍵目標(biāo)。針對(duì)這一需求,眼科醫(yī)療器械領(lǐng)域開(kāi)發(fā)了多種檢查視網(wǎng)膜血管的技術(shù),包括眼底相機(jī)、熒光素血管造影(FA)和光學(xué)相干斷層掃描血管成像(OCTA)等。然而,這些技術(shù)的校準(zhǔn)和性能評(píng)估缺乏能夠模擬人眼視2024
07-04香港城市大學(xué):基于3D打印的仿生高韌機(jī)械超材料,摩方助力超材料研發(fā)突破
具有交錯(cuò)層狀微納結(jié)構(gòu)的海螺殼以良好的吸能特性而聞名。其內(nèi)部的軟-硬界面可在保證有效能量吸收的同時(shí)合理調(diào)控生成裂紋的走向,提高了整體破壞的能量吸收閾值。受此啟發(fā),香港城市大學(xué)機(jī)械工程系的陸洋教授提出了一種機(jī)械超材料結(jié)構(gòu)設(shè)計(jì)長(zhǎng)程周期性概念:即在保留整體結(jié)構(gòu)周期性的基礎(chǔ)上引入了局域特殊性,從而同時(shí)實(shí)現(xiàn)機(jī)械超材料在受力變形過(guò)程中剪切帶均勻分布與尺寸縮減的目的。此外,基本單元節(jié)點(diǎn)異質(zhì)性帶來(lái)的約束梯度能夠?qū)崿F(xiàn)超材料內(nèi)部破壞位置與順序的有效調(diào)控。通過(guò)利用摩方精密面投影微立體光刻(PμSL)3D打印技術(shù)(nan2024
07-013D打印內(nèi)窺鏡技術(shù)的優(yōu)勢(shì)與挑戰(zhàn)
3D打印內(nèi)窺鏡技術(shù)的優(yōu)勢(shì)與挑戰(zhàn)如下:優(yōu)勢(shì):制造效率提升:3D打印技術(shù)可以直接將設(shè)計(jì)好的模型轉(zhuǎn)化為實(shí)物,省去了傳統(tǒng)制造中的多道工序和加工,從而大大縮短了制造周期,提高了生產(chǎn)效率。成本降低:相較于傳統(tǒng)制造方式,3D打印技術(shù)減少了材料和工具的浪費(fèi),降低了不必要的開(kāi)銷,使得內(nèi)窺鏡的制造成本得以降低。精度和靈活性提高:3D打印技術(shù)能夠精確地制造出設(shè)計(jì)好的模型,并且可以根據(jù)需要進(jìn)行個(gè)性化的定制,提高了制造的靈活性和精度,使得內(nèi)窺鏡更加符合醫(yī)療需求。微型化和定制化:3D打印技術(shù)使得內(nèi)窺鏡的微型化成為可能,同時(shí)2024
07-01美國(guó)圣母大學(xué)《ACS Nano》:用于細(xì)胞外納米載體的可擴(kuò)高通量等電位分離平臺(tái)
微流控(microfluidics)是一種以在微納米尺度空間中對(duì)流體進(jìn)行精確操控為主要特征的科學(xué)技術(shù),具有將生物、化學(xué)等實(shí)驗(yàn)室的基本功能諸如樣品制備、反應(yīng)、分離和檢測(cè)等微縮到一個(gè)幾平方厘米芯片上的能力,其基本特征和優(yōu)勢(shì)是多種單元技術(shù)在整體可控的微小平臺(tái)上靈活組合、規(guī)模集成。該技術(shù)通過(guò)對(duì)流量的控制,實(shí)現(xiàn)化學(xué)分析、藥物篩選、細(xì)胞培養(yǎng)、基因檢測(cè)等多種功能,在時(shí)間和空間上為實(shí)驗(yàn)機(jī)構(gòu)研究分子濃度控制帶來(lái)了全新的技術(shù)解決方案。微流控的兩項(xiàng)主要應(yīng)用為POCT和生物制藥科研(包括測(cè)序、基因組學(xué)和蛋白質(zhì)組學(xué))。根2024
06-28南洋理工大學(xué)王一凡團(tuán)隊(duì):光固化3D打印可控粘附與力學(xué)性能的水凝膠傳感器
導(dǎo)電水凝膠材料在可穿戴傳感應(yīng)用中得到了廣泛的研究,因?yàn)樗鼈兙哂辛己玫碾妼?dǎo)性、生物相容性以及接近人體皮膚的彈性模量等優(yōu)勢(shì)?;谒z的可穿戴應(yīng)變傳感器由于其在實(shí)時(shí)健康監(jiān)測(cè)和運(yùn)動(dòng)檢測(cè)中的應(yīng)用前景廣闊,最近引起了人們的極大興趣。然而,在水凝膠系統(tǒng)中同時(shí)實(shí)現(xiàn)綜合的高拉伸性、自粘性和長(zhǎng)期保水性能仍然是一個(gè)巨大的挑戰(zhàn),這限制了它們?cè)诳纱┐麟娮赢a(chǎn)品中的應(yīng)用。近期,南洋理工大學(xué)王一凡教授團(tuán)隊(duì)針對(duì)于可穿戴水凝膠傳感器的力學(xué)性能,黏附性能,保水性能以及生物相容性能難以兼顧的問(wèn)題,通過(guò)引入蠶絲蛋白,設(shè)計(jì)了一種可光固化2024
06-27多仿生槽錐刺結(jié)構(gòu)實(shí)現(xiàn)跨氣-液界面定向操控,摩方助力仿生輸送系統(tǒng)研發(fā)
西南科技大學(xué)微納仿生系統(tǒng)與智能化研究團(tuán)隊(duì)李國(guó)強(qiáng)教授與海河實(shí)驗(yàn)室曹墨源研究員合作,受魚(yú)刺微油滴操控功能、水稻葉表面各向異性液滴滑動(dòng)現(xiàn)象啟發(fā),利用摩方精密PμSL高精密3D打印技術(shù)(nanoArch®S140,P150)制備了一種多仿生槽錐刺結(jié)構(gòu)(BGCS)實(shí)現(xiàn)水下油滴的逆重力高效運(yùn)輸與收集。仿生槽錐刺集油陣列裝置表現(xiàn)出在水環(huán)境下連續(xù)、自發(fā)地收集油滴的性能。該研究為復(fù)雜環(huán)境下的油滴從輸送到收集提供了一種集成、通用的新策略,在水下微油滴收集系統(tǒng)、生物分析及污染治理等領(lǐng)域具有廣闊的應(yīng)用前景。2024
06-26新加坡國(guó)立大學(xué)劉小鋼團(tuán):制備用于提高射線成像性能的像素化雙錐形光纖陣列
當(dāng)前,在全球范圍內(nèi)科技與產(chǎn)業(yè)革命的浪潮中,信息光電子、激光加工、激光全息、光電傳感等技術(shù)正在快速發(fā)展。光電產(chǎn)業(yè)與能源、信息、醫(yī)療等領(lǐng)域的結(jié)合和滲透也在加速,推動(dòng)著新技術(shù)、新產(chǎn)品和新商業(yè)模式的不斷涌現(xiàn),全球光電產(chǎn)業(yè)的競(jìng)爭(zhēng)格局經(jīng)歷重大重塑。據(jù)MarketResearchFuture預(yù)測(cè),到2032年,光電市場(chǎng)的規(guī)模將從2024年的381.9億美元增長(zhǎng)至845億美元。預(yù)計(jì)在2024至2032年期間,該市場(chǎng)的年復(fù)合增長(zhǎng)率為10.44%,其中光電子在多個(gè)不同領(lǐng)域的應(yīng)用增加以及紅外元件利用率的提高是促進(jìn)市場(chǎng)2024
06-21微納3D打印技術(shù)在耐高溫連接器制備中的應(yīng)用
隨著大數(shù)據(jù)、5G時(shí)代的到來(lái),移動(dòng)通信、計(jì)算機(jī)等領(lǐng)域迎來(lái)新的發(fā)展機(jī)會(huì),連接器已成為這些行業(yè)急需的組件。同時(shí),受益于通信、消費(fèi)電子、新能源汽車、工控安防等行業(yè)的持續(xù)發(fā)展,全球連接器市場(chǎng)需求保持著穩(wěn)定增長(zhǎng)的態(tài)勢(shì),全球連接器總體市場(chǎng)規(guī)??傮w呈現(xiàn)上升態(tài)勢(shì)。為滿足下游終端產(chǎn)品的短小輕薄、性能提升的發(fā)展趨勢(shì),連接器也逐步向微型化、高速化和大電流方向發(fā)展。終端產(chǎn)品的微型化,意味著連接器的線距不斷變小、接觸點(diǎn)更加密集,需要在極小的空間內(nèi)實(shí)現(xiàn)同等的功能,也對(duì)連接器內(nèi)部的觸腳間電阻、抗電磁干擾能力以及微型化設(shè)計(jì)等各方以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),化工儀器網(wǎng)對(duì)此不承擔(dān)任何保證責(zé)任。
溫馨提示:為規(guī)避購(gòu)買風(fēng)險(xiǎn),建議您在購(gòu)買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。