詳細(xì)介紹
AACT抗胰糜蛋白酶(兔多克隆抗體)
α-1-Antichymotrypsin
廣州健侖生物科技有限公司
AACT是一種絲氨酸蛋白酶抑制劑,可以中和糜蛋白酶等酶活性的蛋白酶,存在于大多數(shù)的組織細(xì)胞、巨噬細(xì)胞以及多種胃腸道和肺部腫瘤中,但多形核白細(xì)胞中無(wú)此物質(zhì),它可以作為組織細(xì)胞瘤和良性/惡性纖維組織細(xì)胞瘤的標(biāo)志。此抗體與人的AACT反應(yīng),主要用于惡性纖維組織細(xì)胞瘤等惡性腫瘤的診斷,也可用于胃癌、肺癌、腎癌等腫瘤的研究。
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲(chóng)病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢
【產(chǎn)品介紹】
細(xì)胞定位:細(xì)胞漿
適用組織:石蠟/冰凍
陽(yáng)性對(duì)照:扁桃體
抗原修復(fù):熱修復(fù)(EDTA)
抗體孵育時(shí)間:30-60min
產(chǎn)品編號(hào) | 產(chǎn)品名稱(chēng) | 克隆型別 |
OB001 | AACT(抗胰糜蛋白酶) | polyclonal |
OB002 | AAT(抗胰蛋白酶) | polyclonal |
OB003 | ACTH(促腎上腺皮質(zhì)激素) | polyclonal |
OB004 | Actin,Muscle Specific(肌肉特異性肌動(dòng)蛋白) | HHF35 |
OB005 | Actin,Smooth Muscle(平滑肌肌動(dòng)蛋白) | 1A4 |
OB006 | AFP(甲胎蛋白) | polyclonal |
AACT抗胰糜蛋白酶(兔多克隆抗體)
剛開(kāi)始嘗試“培養(yǎng)”視網(wǎng)膜時(shí),我們實(shí)驗(yàn)室還在探討視網(wǎng)膜形成的一些基本問(wèn)題。我們知道,視網(wǎng)膜是從胎兒大腦中名為“間腦”(diencephalon)的那一部分發(fā)育而來(lái)的。在胚胎發(fā)育的早期階段,間腦的一部分會(huì)擴(kuò)展,形成氣球狀的視泡(optic vesicle),后者再向內(nèi)凹陷,形成視杯;視杯進(jìn)一步形變,zui終成為視網(wǎng)膜。
一個(gè)多世紀(jì)以來(lái),生物學(xué)家一直就視杯形成的精確機(jī)制爭(zhēng)論不休,直到今天,研究大腦發(fā)育的科學(xué)家仍然各執(zhí)一詞。其中一個(gè)較有爭(zhēng)議的問(wèn)題是,在視杯形成過(guò)程中,與之相鄰的一些結(jié)構(gòu),如晶狀體和角膜起了什么作用?有些科學(xué)家認(rèn)為,視網(wǎng)膜向內(nèi)凹陷,是因?yàn)槭艿搅司铙w的物理推動(dòng)作用;也有科學(xué)家認(rèn)為,視杯無(wú)須借助晶狀體的作用,就可以自己形成。
要想在活著的、正在發(fā)育中的動(dòng)物身上觀察這一現(xiàn)象絕非易事,因此大約在10年前,我的研究團(tuán)隊(duì)決定做一次嘗試,看能不能把眼睛的發(fā)育過(guò)程“提取”出來(lái)。
具體做法是,先在培養(yǎng)皿中培養(yǎng)胚胎干細(xì)胞,然后加入眼睛發(fā)育所需的化學(xué)物質(zhì),觀察培養(yǎng)皿中發(fā)生的情況。從發(fā)育程度上來(lái)說(shuō),胚胎干細(xì)胞是zui原始的干細(xì)胞,zui終可以分化成從神經(jīng)到肌肉的各種組織。
當(dāng)時(shí),把干細(xì)胞培育成器官的技術(shù)尚不存在。人們?cè)严嗷シ蛛x的干細(xì)胞“撒”在膀胱或食管形狀的人工骨架上,試圖搭建出新的器官。這類(lèi)組織工程學(xué)技術(shù)在培植真實(shí)器面并不是很成功。
因此,我們決定另辟蹊徑。在正式動(dòng)手之前,我們做了一些準(zhǔn)備工作。2000年,我們發(fā)明了一種細(xì)胞培養(yǎng)方法,可以把小鼠的胚胎干細(xì)胞轉(zhuǎn)變成多種神經(jīng)細(xì)胞。隨后,我們?cè)谂囵B(yǎng)皿中培養(yǎng)了一層小鼠胚胎干細(xì)胞,并加入一些可充當(dāng)“傳遞員”的細(xì)胞——這些細(xì)胞會(huì)向胚胎干細(xì)胞傳遞化學(xué)信號(hào),促使后者發(fā)育、分化,脫離胚胎狀態(tài)。我們培養(yǎng)這些細(xì)胞的目的,并不是要復(fù)制某個(gè)人體器官的三維結(jié)構(gòu),而是想看看,僅用細(xì)胞自身的化學(xué)信號(hào),是否足以讓胚胎干細(xì)胞形成眼睛發(fā)育早期所*的神經(jīng)細(xì)胞。
起初,我們沒(méi)有獲得多大的成功,但在2005年,我們?cè)诩夹g(shù)上取得了突破。以前,我們實(shí)驗(yàn)室在培養(yǎng)干細(xì)胞時(shí),細(xì)胞只能平鋪在培養(yǎng)皿上,但在2005年,我們突破了“二維限制”,可以讓干細(xì)胞懸浮在培養(yǎng)液中,這就是“懸浮培養(yǎng)”。我們采用這種三維培養(yǎng)技術(shù)的原因有很多。首先,在懸浮培養(yǎng)中,細(xì)胞聚集時(shí),本身就會(huì)形成三維結(jié)構(gòu),因此在產(chǎn)生復(fù)雜組織時(shí),會(huì)比平鋪的細(xì)胞層更容易;其次,為了發(fā)育成復(fù)雜的結(jié)構(gòu),細(xì)胞之間需要相互交流,而三維培養(yǎng)更適于促進(jìn)這樣的交流,因?yàn)榧?xì)胞之間可以更加靈活地發(fā)生相互作用。
使用這種新方法,我們把相互分離的胚胎干細(xì)胞懸浮在液體培養(yǎng)基中,然后注入多孔培養(yǎng)皿的小孔中(每個(gè)小孔只有微量的培養(yǎng)基,含大約3 000個(gè)胚胎干細(xì)胞)。我們發(fā)現(xiàn),原本分開(kāi)的胚胎干細(xì)胞開(kāi)始聚集在一起。
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲(chóng)病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
想了解更多的產(chǎn)品及服務(wù)請(qǐng)掃描下方二維碼:
【公司名稱(chēng)】 廣州健侖生物科技有限公司
【市場(chǎng)部】 楊永漢
【】
【騰訊 】
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-103室
At the beginning of trying to "c*te" the retina, our laboratory is still exploring some of the basic problems of retinal formation. We know that the retina develops from that part of the fetal brain called diencephalon. In the early stages of embryonic development, a portion of the diencephalon expands to form a balloon-shaped optic vesicle, which in turn sinks inwardly to form an optic cup; the optic cup further deforms to eventually become the retina.
For more than a century, biologists have been arguing for the exact mechanism by which cups are formed. Until today, scientists studying brain development remained silent. One of the more controversial issues is the role of adjacent structures such as the lens and cornea during optic cup formation. Some scientists believe that the retina is inwardly depressed because of the physical impetus of the lens Role; also some scientists believe that the cup without the help of the role of lens, you can form their own.
Observing this phenomenon on living, developing animals is by no means an easy task, so about 10 years ago my team decided to make an attempt to "extract" the development of the eye.
This is done by first culturing embryonic stem cells in a petri dish and then adding the chemicals needed for eye development to observe what is happening in the petri dish. In terms of development, embryonic stem cells are the most primitive stem cells that eventually differentiate into various tissues ranging from nerve to muscle.
At the time, the technology to grow stem cells into organs did not exist yet. People have "sprinkled" separated stem cells on the artificial skeleton of the bladder or esophagus in an effort to build new organs. Such tissue engineering techniques are not very successful in developing real organs.
Therefore, we decided to find another way. Before we started, we made some preparations. In 2000, we invented a cell culture method that transforms mouse embryonic stem cells into a variety of nerve cells. We then cultured a layer of mouse embryonic stem cells in a Petri dish and added cells that act as "transferees" - these cells send chemical signals to the embryonic stem cells that cause the latter to develop, differentiate, and detach themselves from the embryo. Instead of trying to copy the three-dimensional structure of a human organ, we want to see if the chemical signals of the cells alone are enough for embryonic stem cells to become neurons that are unique to early eye development.
At first, we did not get much success, but in 2005, we made a technological breakthrough. In the past, when we cultured stem cells in our laboratory, the cells were only laid on the culture dish. However, in 2005, we broke through the "two-dimensional limitation" and allowed the suspension of stem cells in the culture medium. This is called "suspension culture." There are many reasons why we use this three-dimensional culture technique. First, in suspension culture, cells accumulate and form three-dimensional structures themselves, making them easier to produce complex tissues than tiled cell layers. Second, cells need to communicate with each other in order to develop complex structures , While three-dimensional c*tion is better suited to facilitate such exchanges because the cells can interact more flexibly.
Using this new method, we suspended the embryonic stem cells isolated from each other in liquid medium and injected them into the wells of a multi-well culture dish (with only a minimal amount of media per well containing approximay 3,000 embryonic stem cells). We found that originally separated embryonic stem cells began to congregate.