文獻名: Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents
作者: Seong-Cheol Parka, Nam-Hong Kima, Wonseok Yangb, Jae-Woon Naha, Mi-Kyeong Janga, Dongwon Leeb, c,
a Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Chonnam, 540-950, Republic of Korea
b Department of BIN Convergence Technology, 567 Baekje-daero, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
c Department of Polymer⋅Nano Science and Technology, 567 Baekje-daero, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
摘要:Reactive oxygen species (ROS) produced by host phagocytes exert antibacterial action against a variety of pathogens and ROS-induced oxidative stress is the governing mechanism for the antibacterial activity of major bactericidal antibiotics. In particular, hydroxyl radical is a strong and nonselective oxidant which can damage biomolecules such as DNA, proteins and lipids. Ferrous ion is known to convert mild oxidant hydrogen peroxide (H2O2) into highly reactive and toxic hydroxyl radicals, referred to as Fenton reaction. Herein, we report a new class of antibacterial agents based on Fenton reaction-performing nanostructures, composed of H2O2-generating polymer (PCAE) and iron-containing ferrocene. Amphiphilic PCAE was designed to incorporate H2O2-generating cinnamaldehyde through acid-cleavable linkages and self-assemble to form thermodynamically stable micelles which could encapsulate ferrocene in their hydrophobic core. All the experiments in vitro display that ferrocene-loaded PCAE micelles produce hydroxyl radicals to kill Escherichia coli and Pseudomonas aeruginosa through membrane damages. Intraperitoneally injected ferrocene-loaded PCAE micelles significantly reduced the lung damages and therefore increased the survival rate of mice infected with drug resistant P. aeruginosa. Given their potent antibacterial activity, ferrocene-loaded PCAE micelles hold great potential as a new class of ROS-manipulating antibacterial agents.
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網(wǎng)聯(lián)系,否則視為放棄相關權利。