Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic env
a Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
b Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
c Institute of Costal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
d Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
摘要:Broad applications of graphene oxide (GO) will result in the release of GO into aquatic environments, where clay minerals and metal (hydr)oxides are commonly present. Thereby the interactions between GO and a binary system containing clay minerals and metal (hydr)oxides can occur. We investigated the aggregation of GO with kaolinite and kaolinite-goethite associations (KGAs) in aquatic systems under different pHs, ionic strengths, and GO concentrations. GO suspension was unstable at low pHs, and the aggregation of GO occurred in the presence of KGA-4% and KGA-10% until pH 5 and 6, respectively. Kaolinite decreased the critical coagulation concentration (CCC) of GO at pH 5.5 from around 50 to 20 mM NaCl due to the reduced energy barrier. Heteroaggregation of GO with KGAs was extremely sensitive to ionic strength at pH 5.5, and the CCC of GO in the presence of KGA-10% increased from less than 1 mM NaCl to 5 mM NaCl with the increase of pH from 5.5 to 9. The heteroaggregation extent of GO with KGAs was enhanced firstly, then reduced with the increase of GO concentrations at pH 5.0, which is likely because KGA plates were more efficiently wrapped by large-size GO sheets with increasing GO concentrations. These findings are useful for understanding and predicting the fate of GO in the relatively complicated aquatic and soil environments where binary minerals co-exist.
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。