Cost effective biochar gels with super capabilities for heavy metal removal
文獻(xiàn)名: Cost effective biochar gels with super capabilities for heavy metal removal
作者: Pan-pan Chen,a Hong-ping Zhang,*a Huan-de Liu,b Xue-gang Luo,a Xiao-yan Lin,a Xiong Luc and Youhong Tang*d
a
Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, China
: zhp1006
+86-816-6089009
+86-816-6089009
b
Western Mining Co. Ltd, The Key Laboratory of Mineral Processing and Comprehensive Utilization in the Plateau of Qinghai Province, Xining 810007, China
c
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
d
Centre for NanoScale Science and Technology, School of Computer Science, Engineering and Mathematics, Flinders University, Australia
摘要:A novel material, the biochar of a konjac-based material (KGMB), was prepared conveniently and economically with chemical activation of hydrothermally synthesized carbon nanospheres. Those carbon nanospheres have small sizes and high surface areas due to the high temperature sintering, which could be used for efficient adsorption of heavy metal ions such as Pb2+ and Cd2+. Detailed adsorption behaviors of the optimized biochar including adsorption isotherms and adsorption kinetics were investigated. The results indicated that the adsorption process is spontaneous, exothermic and pseudo-second-order chemisorption. When the temperature was 298 K, the KGMB dose was 5 mg, the initial concentration of Pb2+ and Cd2+ was both 50 mg L−1, the contact time was 24 h and pH of the ion solution was 5.5, the adsorption capacity reached up to 186.56 mg g−1 for Pb2+ and 129.67 mg g−1 for Cd2+, respectively. What's more, the adsorption capacities of Pb2+ and Cd2+ were 69.34 and 71.06 mg g−1, respectively, after adsorption–desorption process happened three times. Comparisons of the adsorption capacity of various adsorbents for Pb2+ and Cd2+, showed that this biochar is superior to many other adsorbents in terms of adsorption capacity and it is a cheap, efficient and accessible biochar. Thus, KGMB is a promising candidate for wastewater treatment.
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類(lèi)作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。