High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal
a Bharti School of Engineering, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
b Goldcorp Incorporated, Red Lake Gold Mines, 15 Mine Road, Box 2000, Balmertown, Ontario P0V 1C0, Canada
摘要:We report the synthesis of a new range of iron oxide–graphene oxide (GO) nanocomposites having different iron oxide content (36–80 wt%) as high-performance adsorbents for arsenic removal. Synthesized by co-precipitation of iron oxide on GO sheets that are prepared by an improved Hummers method, the iron oxide in the nanocomposites is featured primarily in the desirable form of amorphous nanoparticles with an average size of ca. 5 nm. This unique amorphous nanoparticle morphology of the iron oxide beneficially endows the nanocomposites with high surface area (up to 341 m2 g−1 for FeOx–GO-80 having the iron oxide content of 80 wt%) and predominant mesopore structures, and consequently increased adsorption sites and enhanced arsenic adsorption capacity. FeOx–GO-80 shows high maximum arsenic adsorption capacity (qmax) of 147 and 113 mg g−1 for As(III) and As(V), respectively. These values are the highest among all the iron oxide–GO/reduced GO composite adsorbents reported to date and are also comparable to the best values achieved with various sophisticatedly synthesized iron oxide nanostructures. More strikingly, FeOx–GO-80 is also demonstrated to nearly compley (>99.98%) removes arsenic by reducing the concentration from 118 (for As(III)) or 108 (for As(V)) to <0.02 μg L−1, which is far below the limit of 10 μg L−1 recommended by the World Health Organization (WHO) for drinking water. The excellent adsorption performance, along with their low cost and convenient synthesis, makes this range of adsorbents highly promising for commercial applications in drinking water purification and wastewater treatment.
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網聯(lián)系,否則視為放棄相關權利。