Topotecan-loaded lipid nanoparticles as a viable tool for the topical treatment of skin cancers
摘要:
Objectives
This work aimed to evaluate semisolid formulations containing topotecan (TPT) loaded nanostructured lipid carriers (NLC) for topical treatment of skin cancers, as TPT is effective against a variety of tumours. A formulation which increases TPT skin permeation would be extremely desirable.
Methods
TPT-NLC were prepared and incorporated in hydrogels with hydroxyethyl cellulose and chitosan (TPT-NLC-HEC and TPT-NLC-Ch, respectively). Control formulations were obtained by dispersing TPT in HEC and Ch hydrogels (TPT-HEC and TPT-Ch).
Key findings
TPT-NLC-HEC and TPT-NLC-Ch showed to maintain the drug and nanoparticle dispersions stable for up to 30 days. When nanoparticles were incorporated into gels, TPT release was significantly decreased (P < 0.05). Still, TPT-NLC-HEC increased 2.37 times permeation compared with TPT-HEC (11.9 and 5.0 μg/cm2, respectively). Cell culture experiments with B16F10 melanoma demonstrated that nanoencapsulation significantly increased TPT cytotoxicity (P < 0.05). TPT-NLC was more toxic than free TPT, with IC50 value of 5.74 μg/ml, whereas free TPT had an IC50 > 20 μg/ml. As skin permeated values of TPT from developed formulation (TPT-NLC) were superior to melanoma IC50, it can be extrapolated that chemotherapeutic permeated amounts may be sufficient for a therapeutic effect.
Conclusions
TPT-NLC-HEC may be a valuable tool for the topical treatment of skin cancers.
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內(nèi)容、版權等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關權利。