作者: Xianjun Tan,a Guanhan Chen,b Dingyu Xing,b Wenhui Ding,a Hao Liu,b Ting Lic and Yuxiong Huang
a Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
b Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, P. R. China
c Shenzhen Shenshui Longgang Water Group (Group) Co., Ltd. (LGWG), Shenzhen 518055, P. R. China
摘要:More and more attention has been redirected to per- and polyfluorinated alkyl substances (PFASs), particularly perfluorooctanoic acid (PFOA), owing to their ecotoxicity and environmental risks. As one of the major emerging and persistent contaminants in the environment, the current treatment processes could not remove PFOA efficiently. The recent advances in heterogeneous photocatalysis have demonstrated high efficiencies in degrading persistent contaminants, which provides an alternative approach for PFOA removal. Notably, Ga2O3-based photocatalysts exhibited great potential for PFOA remediation due to their high oxidizing capability and energy sustainability. Thus, Ga2O3 hierarchical nanosheets modified by a series of transition metals were rationally developed, and applied as heterogeneous photocatalysts for fast and efficient PFOA degradation. Noteworthily, the indium modified Ga2O3 hierarchical nanosheets achieved prominent PFOA decomposition activity, which can completely degrade 20 mg L−1 PFOA within 1 hour. The In–Ga2O3 hierarchical composites have dramatically enhanced the degradation kinetics for PFOA, which was 7.8 times higher than that of pristine Ga2O3. With in-depth mechanism investigation, we have demonstrated that In modification can not only enhance light harvesting and suppress photogenerated carrier recombination, but also favor the improvement of the adsorption ability for PFOA through the coexistence of monodentate and bidentate/bridging coordination modes. The transition metals–modification strategy paves the way for fabricating high-performance nanoscale photocatalysts for the removal of PFASs in water.
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對其真實性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。