日本SMC比例閥結構示意及工作過程
文中介紹了研發(fā)的多級套筒式調節(jié)閥內部結構及其工作過程。應用計算流體力學(CFD)軟件對多級套筒調節(jié)閥內部流場進行內三維湍流流動數(shù)值模擬,獲得調節(jié)閥內部壓力、速度及跡線的分布。借助CFD仿真實驗的方法,可以得到多級套筒調節(jié)閥的CV和流量特性曲線,提高樣機試制的成功率,縮短開發(fā)周期,避免常規(guī)設計中,憑借經(jīng)驗參數(shù)或者實際試驗后再修改造成的周期與成本的增加,從而為多級套筒調節(jié)閥的設計與研究提供進一步的參考。
1 日本SMC比例閥結構及工作過程
日本SMC比例閥多用于電站、石化、化工行業(yè)及其他高參數(shù)工況下,工作介質多為高溫水或過熱蒸汽。通液體時流向為從右向左,液體由套筒外側流向內側;通氣體時流向為從左至右,氣體由套筒內側流向外側。由于多級套筒的作用,流體在通過閥體時要經(jīng)歷一個多次逐級降壓的過程,流體每通過一層套筒壓力就會下降一次。多級套筒作為該閥的核心部件,可以使介質流速的增加得到抑制,將壓力的變化控制在允許的范圍之內,有效地避免和減輕閃蒸空化現(xiàn)象的發(fā)生以及高速流體對閥門部件的沖蝕,延長調節(jié)閥的使用壽命,并保證設備與系統(tǒng)的可靠運行。
日本SMC比例閥利用Solidworks三維實體建模軟件,對調節(jié)閥腔內部流道建立模型。整體模型由外部閥腔流道與內部套筒流道兩部分裝配組成,所建實體模型準確地反映了調節(jié)閥內部結構的實際情況。同時,為使模擬計算時流道兩端的流動得以充分進行以及進出口面流動呈穩(wěn)定均勻,對閥門內部流道模型進出口兩端都進行了延伸,建立的流道模型如圖2所示。
日本SMC比例閥閥內流道模型示意
2.3 數(shù)值模擬計算及結果分析
為了保證計算精度,采用以結構性和非結構性網(wǎng)格相結合的劃分方法形成網(wǎng)格。流道兩端的直管段網(wǎng)格采用Hex/Wedge(六面體/楔形)網(wǎng)格進行劃分,中間多級套筒部分的流體通道因為結構比較復雜,所以采用Tet/Hybrid(四面體/混合)網(wǎng)格進行劃分,并且為了使計算結果更加精確,對每一層套筒中的小孔都分別進行了加密處理。由于計算模型是對稱的,因而取其50%進行模擬計算,以減少網(wǎng)格數(shù)目、節(jié)省計算時間;以連續(xù)性方程、三維雷諾平均N-S方程和基于各向同性渦黏性理論的k-ε方程組成調節(jié)閥內部流動數(shù)值模擬的控制方程組,采用有限體積法對控制方程組進行離散;根據(jù)廠方提供的系統(tǒng)運行實際工況參數(shù),該次計算的進口處壓力為7MPa,出口處壓力為0,介質為常溫水,密度ρ=998.2kg/m3。
2.3.1 壓力場分析
壓力分布云圖如圖3所示,從中可以看出:調節(jié)閥進、出口壓力分布比較均勻,套筒中壓力逐級穩(wěn)定下降,在閥體下腔與出口直管段處有局部低壓區(qū)域,如A處所示。此工況下,局部壓力為7.17MPa,分布在閥門進口與最外側套筒處。
圖3 z=0水平截面上壓力分布云圖
2.3.2 速度場分析
速度分布如圖4所示,入口端和閥腔內速度分布比較均勻,出口端因受套筒節(jié)流效應及閥體流道結構影響速度分布較不均勻。套筒內速度由外向內逐級上升,在7MPa壓差的工況下,在最內側套筒中速度達到,如B處所示。在入口段及出口段流道拐角處出現(xiàn)了幾處范圍很小的閥門死區(qū),此處流體靜止,速度為0。
圖4 z=0水平截面上速度分布云圖
2.3.3 跡線
閥內流體跡線分布如圖5所示,跡線是單個質點在連續(xù)時間內的流動軌跡線,是拉格朗日法描述流動的一種方法,閥內流體跡線在進口處較為均勻,由套筒進入閥體下腔時分布比較集中,出口處部分由于流道結構特點流體分布較不均勻,如C處所示。
日本SMC比例閥內部流動數(shù)值模擬的控制方程組,依據(jù)數(shù)值計算要求,設定適當?shù)倪吔鐥l件,采用結構與非結構網(wǎng)格相結合有限體積法對控制方程組進行離散;應用CFD軟件對多級套筒調節(jié)閥內部流場進行內三維湍流流動數(shù)值模擬,分別對其壓力場、速度場和跡線分布進行了分析。結果表明多級套筒結構的設計能較好地改進閥內流動狀況,實現(xiàn)壓力的漸變,有效地避免汽蝕現(xiàn)象的發(fā)生。在設計過程中引入了CFD仿真實驗,研究了多級套筒調節(jié)閥的流量特性,提高了樣機試制的成功率,縮短了開發(fā)周期,降低了成本,從而為多級套筒調節(jié)閥的設計與研究提供借鑒。
日本SMC比例閥系列,它是流體運輸過程和工藝環(huán)路中的重要控制元件,是確保各種工藝設備正常工作的關鍵設備,被廣泛應用于工業(yè)生產(chǎn)及日常生活各個領域中。隨著技術的進步,工業(yè)實踐中的各種場合都對調節(jié)閥提出了高溫、高壓、高壓差等要求。尤其是應用于高壓差條件下的調節(jié)閥,極易在閥芯及閥座部位產(chǎn)生嚴重的沖蝕和汽蝕,并伴有強烈的振動和噪聲現(xiàn)象。這些現(xiàn)象導致在高壓差條件下工作的調節(jié)閥工作性能降低、使用壽命縮短,帶來安全隱患,給工業(yè)生產(chǎn)領域的安全高效運轉帶來諸多問題,甚至導致嚴重事故發(fā)生。因此,研發(fā)于高壓差工況下的特殊調節(jié)閥意義重大。
日本SMC比例閥結構示意及工作過程
相關產(chǎn)品
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-化工儀器網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本網(wǎng)授權不得轉載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。
- 本網(wǎng)轉載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發(fā)表之日起一周內與本網(wǎng)聯(lián)系,否則視為放棄相關權利。