文獻(xiàn)名:An oligopeptide/aptamer-conjugated dendrimer-based nanocarrier for dual-targeting delivery to bone
作者: Mingxing Ren,abc Yuzhou Li,abc He Zhang,abc Lingjie Li,abc Ping He,abc Ping Jiabc and Sheng Yang abc
a College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing, China
b Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
c Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
摘要:Bone targeting is one of the most potentially valuable therapeutic methods for medically treating bone diseases, such as osteoarthritis, osteoporosis, nonunion bone defects, bone cancer, and myeloma-related bone disease, but its efficacy remains a challenge due to unfavorable bone biodistribution, off-target effects, and the lack of cell specificity. To address these problems, we synthesized a new dual-targeting nanocarrier for delivery to bone by covalently modifying the G4.0 PAMAM dendrimer with the C11 peptide and the CH6 aptamer (CH6-PAMAM-C11). The molecular structure was confirmed using 1H-NMR and FT-IR spectroscopy. CLSM results showed that the novel nanocarrier could successfully accumulate in the targeted cells, mineralized areas and tissues. DLS and TEM demonstrated that CH6-PAMAM-C11 was approximately 40–50 nm in diameter. In vitro targeting experiments confirmed that the C11 ligand had a high affinity for HAP, while the CH6 aptamer had a high affinity for osteoblasts. The in vivo biodistribution analysis showed that CH6-PAMAM-C11 could rapidly accumulate in bone within 4 h and 12 h and then deliver drugs to sites of osteoblast activity. The components of CH6-PAMAM-C11 were well excreted via the kidneys. The accumulation of many more CH6-PAMAM-C11 dual-targeting nanocarriers than single-targeting nanocarriers was observed in the periosteal layer of the rat skull, along with aggregation at sites of osteoblast activity. All of these results indicate that CH6-PAMAM-C11 may be a promising nanocarrier for the delivery of drugs to bone, particularly for the treatment of osteoporosis, and our research strategy may serve as a reference for research in targeted drug, small molecule drug and nucleic acid delivery.
關(guān)鍵詞:
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。