文獻名: Accurate prediction for adsorption rate of peptides with high ACE-inhibitory activity from sericin hydrolysate on thiophene hypercross-linked polymer using CoMSIA in 3D-QSAR model
作者: Shan Shaoa; Huaju Suna; Yaseen Muhammadb; Hong Huanga; Ruimeng Wanga; Shuangxi Niea; Meiyun Huanga; Ziyi Zhaoa; Zhongxing Zhaoa
a Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
b Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, KP, Pakistan
摘要:Efficient screening of angiotensin converting enzyme inhibitory (ACE-I) peptides from agricultural or edible sources attract increasing attention. However, their purification process from the complex natural system is still semi-empirical or even uncontrollable, which has seriously reduced their screening efficiency. Herein, inspired by the prediction of ACE-I activity, 3D-QSAR was proposed to predict the adsorption performance of peptides from sericin hydrolysate (SH) having high ACE-I activity on porous hypercross-linked polymers according to their molecular structures. Thiophene hypercross-linked polymer (T-HCP) possessing better screening capacity for ACE-I peptides was chosen as our research object in this work. The sequence and relative adsorption rate of 101 peptides in SH were analyzed by LC-MS and was used as a database to construct the relationship of peptide’s chemical structure and adsorption performance on T-HCP by Comparative molecular similarity indices analysis (CoMSIA) from 3D-QSAR. Optimum CoMSIA revealed that enhanced interaction of hydrophobicity and H-bond between T-HCP and the peptide was conducive to increase the adsorption performance of di- to hexa- peptides. Based on these relationships, the adsorption capability of 24 designed peptides with distinguished hydrophobic and H-bond fields was predicted on T-HCP by using optimum CoMSIA and the results of half of these were verified, which showed high consistency with their predicted adsorption rate. Interestingly, these peptides having higher adsorption capacities on T-HCP also possessed higher ACE-I activity. This can be attributed to the high concentration of aromatic surface with π-π interaction and weak-polar CS
C group with H-bond interaction on T-HCP material, which is ideal for the selective adsorption of peptides with higher ACE-I activity from SH. This study provides important theoretical guidance for the industrial screening of bio-functional peptides from complex protein mixtures.
關(guān)鍵詞:3D-QSAR; Thiophene hypercross-linked polymer; Adsorption prediction; ACE inhibitory peptide; Sericin hydrolysate; Relationship
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。