文獻(xiàn)名: Magnetically gradient-distributed microcapsule/epoxy composites: low capsule load and highly targeted self-healing performance
作者:Wenxia Simaa; Qianqiu Shaoa; Potao Suna; Chen Lianga; Ming Yanga; Ze Yina; Qin Dengb
a State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, People's Republic of China
b Analytical and Testing Center, Chongqing University, Chongqing 400030, People's Republic of China
摘要:One-component self-healing epoxy-matrix composites are needed urgently in the electronics industry because of their ability to repair surface damage autonomously. However, their practical applications are limited by unsuitable external stimuli and heavy microcapsule loads. Here, we report a magnetic-field and ultraviolet dual-responsive microcapsule to endow epoxy composites with a highly targeted self-healing capability under low microcapsule loads. Specifically, 5 wt% Fe3O4@SiO2 nanoparticles that were incorporated into the core material served as magnetic targets and helped the microcapsules to navigate to the near-surface region of a high-failure probability, to form magnetically gradient-distributed microcapsule/epoxy composites. This resulted in a more than fourfold increase in the local microcapsule concentration. The successful targeted self-healing with a microcapsule doping percentage as low as 4 wt% was confirmed by laser-scanning fluorescence confocal microscopy and scanning electron microscopy observations, and electrochemical testing. In addition, a kinetic model based on isothermal photo-differential scanning calorimetry measurements and a molecular-dynamics simulation model were both established to analyze the self-healing mechanism. Because of the facility and universality of this magnetic control method, these magnetic microcapsules could be guided to concentrate in vulnerable parts of other electrical insulators as desired, which highlights the good potential of this targeted self-healing method in energy fields.
關(guān)鍵詞:Targeted self-healing; Magnetic control method; Microcapsule; Kinetic model; Molecular-dynamics simulation model
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。