文獻(xiàn)名: Calcium-enhanced retention of humic substances by carbon nanotube membranes: Mechanisms and implication
作者: Yankun He,Lanlan Qin,Haiou Huang
State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
摘要:Efficient removal of humic substances (HS) in natural water is of importance to drinking water treatment. In this study, the adsorption and retention of HS by multi-walled carbon nanotube (MWCNT) membranes were systematically investigated by dynamic filtration of synthetic and natural surface water. In the absence of Ca(II), HS were dominated by small, dissolved species albeit the varying pH. Accordingly, HS retention by the MWCNT layers only ranged from 15%-65% at the end of the filtration. In contrast, the presence of Ca(II) in the feed water partially transformed HS molecules into colloidal aggregates as found by light scattering analyses. Furthermore, molecular dynamics (MD) simulation results reveal that Ca(II) complexation with -COO- on MWCNT and humic acid (HA) not only leads to HA aggregation in the feed solution, but also promotes HA adsorption onto carboxylated MWCNT. The modeling results are consistent with the high retention of HS by the carboxylated MWCNT membrane, i.e., >90% for the synthetic model water and >85% for the natural water, at a moderate calcium concentration range of 0.5–2.0 mM. Considering the widespread presence of calcium in natural water, these findings suggested that carboxylated MWCNT has a potential for effective adsorptive filtration of HS in drinking water.
關(guān)鍵詞:Carbon nanotubes;Functional groups;Humic substances;Adsorption;Retention
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。