從品種識(shí)別到缺陷檢測:雙相機(jī)高光譜分選儀構(gòu)建糧食質(zhì)量全鏈條監(jiān)控屏障
【上期回顧】我們介紹了高光譜成像技術(shù)在糧食水分、脂肪酸、蛋白質(zhì)等理化品質(zhì)檢測中的最新研究進(jìn)展,展示了其在糧食品質(zhì)可視化和精準(zhǔn)定量中的強(qiáng)大潛力。
【本期看點(diǎn)】今天我們將進(jìn)一步聚焦高光譜成像技術(shù)在糧食品種識(shí)別與不完善粒檢測中的應(yīng)用,從假種子識(shí)別、混雜品種分辨,到霉變、蟲蛀等缺陷的精準(zhǔn)分類與可視化分析,一起看看高光譜如何“看穿”每一粒糧食的內(nèi)外品質(zhì),為糧食安全保駕護(hù)航!
1. 高光譜成像技術(shù)在糧食品種識(shí)別中的應(yīng)用
Zhang et al. (2024) 提出了一種基于高光譜成像和深度一類學(xué)習(xí)(OCL)的玉米種子欺詐檢測方法,旨在解決復(fù)雜開放場景下未知假品種的識(shí)別難題。通過融合高光譜數(shù)據(jù)的光譜與空間信息,結(jié)合波段注意力機(jī)制(BAM)抑制冗余波段干擾,構(gòu)建雙分支特征提取網(wǎng)絡(luò),并利用最小體積超球體學(xué)習(xí)策略實(shí)現(xiàn)真實(shí)品種的高效包裹與假品種的精準(zhǔn)拒絕。實(shí)驗(yàn)基于20個(gè)中國主栽玉米品種數(shù)據(jù)集,采用光譜(400.8-1000.7 nm)和降維后的單波段空間信息,模型在接收真實(shí)品種(ARK)和拒絕假品種(ARU)的準(zhǔn)確率分別達(dá)到93.70%和94.28%,AUC值為0.9399,顯著優(yōu)于傳統(tǒng)OCSVM、孤立森林及深度SVDD等方法。該方法通過端到端網(wǎng)絡(luò)架構(gòu)避免了復(fù)雜光譜預(yù)處理,結(jié)合信息融合與注意力機(jī)制提升了模型的穩(wěn)定性和解釋性,為種子質(zhì)量監(jiān)管及農(nóng)產(chǎn)品防偽提供了高效、無損的解決方案。
圖10 種子欺詐檢測的單類分類器的網(wǎng)絡(luò)結(jié)構(gòu)
Huang et al. (2022) 該研究結(jié)合近紅外高光譜成像(HSI)與深度森林(DF)模型,開發(fā)了一種快速無損測定高粱純度的方法。通過孤立森林算法(IF)和主成分分析(PCA)剔除異常數(shù)據(jù)后,采用競爭性自適應(yīng)重加權(quán)采樣(CARS)與連續(xù)投影算法(SPA)提取特征波長,并結(jié)合灰度共生矩陣(GLCM)獲取紋理特征。基于不同數(shù)據(jù)類型(全光譜、特征光譜、紋理特征及融合數(shù)據(jù))構(gòu)建的DF模型中,特征光譜模型的性能*優(yōu),其平均正確識(shí)別率(CRR)超過91%,驗(yàn)證集I的平均CRR為88.89%。此外,模型在摻假比例檢測中預(yù)測偏差小于4%。研究證實(shí),HSI與DF的結(jié)合能夠高效區(qū)分高粱品種并精準(zhǔn)評(píng)估純度,為谷物質(zhì)量的無損檢測提供了新策略。高粱摻雜識(shí)別可視化如圖11所示。
圖11 高粱摻雜識(shí)別可視化
Han et al. (2024) 該研究開發(fā)了一種雙通道深度學(xué)習(xí)特征融合模型(DLFM),通過一維卷積模塊提取高光譜數(shù)據(jù)的光譜特征,二維卷積模塊提取RGB圖像的空間特征,并利用自適應(yīng)特征融合模塊實(shí)現(xiàn)多源數(shù)據(jù)融合(圖12)。實(shí)驗(yàn)表明,DLFM在三品種、四品種和五品種小麥組合中的識(shí)別準(zhǔn)確率分別達(dá)到99.18%、97.30%和93.18%,平均準(zhǔn)確率為92.87%,較傳統(tǒng)SVM、1DCNN和2DCNN模型提升顯著(最高提升12.54%)。驗(yàn)證集可視化顯示,模型能有效區(qū)分光譜和紋理特征相似的小麥品種,且預(yù)測誤差控制在10粒以內(nèi)。研究證實(shí),DLFM通過自適應(yīng)融合光譜與圖像特征,顯著提升了復(fù)雜混合場景下的分類穩(wěn)定性,為谷物品種快速無損識(shí)別提供了新方法。
圖12 DLFM模型的結(jié)構(gòu)
Makmuang et al. (2023) 提出了一種基于監(jiān)督自組織映射(SOM)的高光譜近紅外(NIR)成像技術(shù),用于快速、無損鑒別雜草水稻與栽培水稻種子。針對(duì)雜草水稻與栽培水稻形態(tài)相似導(dǎo)致傳統(tǒng)鑒別方法效率低的問題,研究通過優(yōu)化高光譜成像參數(shù)(如縮放值與地圖大?。?,構(gòu)建全局SOM模型,將種子圖像像素直接投影至模型進(jìn)行分類,并結(jié)合熱重分析(TGA)、掃描電子顯微鏡(SEM)、傅里葉變換紅外光譜(ATR-FTIR)及實(shí)時(shí)直接分析質(zhì)譜(DART-MS)驗(yàn)證化學(xué)與物理特性差異(圖13)。實(shí)驗(yàn)表明,該方法在雜草水稻與栽培水稻PL2和RD49品種的分類中分別達(dá)到98%和88%的準(zhǔn)確率,且獨(dú)立于區(qū)域興趣(ROI)選擇,顯著優(yōu)于傳統(tǒng)方法。研究首*將監(jiān)督SOM與高光譜NIR技術(shù)結(jié)合應(yīng)用于種子質(zhì)量評(píng)估,為農(nóng)業(yè)實(shí)踐中快速、精準(zhǔn)的種子鑒別提供了創(chuàng)新解決方案。
圖13研究流程圖
2. 高光譜成像技術(shù)在糧食不完善粒識(shí)別中的應(yīng)用
不完善粒是指受到損傷但仍有使用價(jià)值的籽粒包括蟲蝕粒、病斑粒、生芽粒、霉變粒、破損粒等,各種不完善粒的產(chǎn)生不僅會(huì)給糧食生產(chǎn)帶來經(jīng)濟(jì)損失,還會(huì)危及食品安全健康。Yang et al. (2024) 本研究提出了一種基于高光譜成像(HSI)和融合光譜-空間注意力模塊的卷積神經(jīng)網(wǎng)絡(luò)(CNN-Spl-Spal-At)的玉米粒缺陷無損檢測方法。通過對(duì)發(fā)芽、熱損傷、蟲害、霉變、破碎及健康六類玉米粒(共594個(gè)樣本)的高光譜數(shù)據(jù)(380-1000 nm)分析,構(gòu)建了結(jié)合光譜注意力和空間注意力機(jī)制的深度學(xué)習(xí)模型,并對(duì)比了傳統(tǒng)機(jī)器學(xué)習(xí)模型(SVM、ELM)及不同CNN變體的性能(圖14)。實(shí)驗(yàn)結(jié)果表明,CNN-Spl-Spal-At模型在訓(xùn)練集和測試集上分別達(dá)到98.04%和94.56%的平均分類準(zhǔn)確率,顯著優(yōu)于傳統(tǒng)方法和單一注意力模塊的CNN模型。該模型通過可視化技術(shù)直觀展示不同缺陷類型在玉米粒表面的分布,驗(yàn)證了其在細(xì)節(jié)特征提取和分類魯棒性上的優(yōu)勢。研究為基于高光譜成像的糧食質(zhì)量在線檢測設(shè)備開發(fā)提供了理論支持,并拓展了多模態(tài)特征融合與注意力機(jī)制在農(nóng)業(yè)無損檢測中的應(yīng)用潛力。
圖14 研究流程圖
Dhakal et al. (2023) 基于高光譜成像(HSI)與機(jī)器學(xué)習(xí)方法,提出了一種小麥籽粒赤霉?。‵HB)損傷及其毒素脫氧雪腐鐮刀菌烯醇(DON)含量的無損檢測技術(shù)。通過對(duì)129個(gè)小麥品種的田間試驗(yàn)樣本(DON含量通過GC-MS測定)進(jìn)行高光譜數(shù)據(jù)采集,結(jié)合集成學(xué)習(xí)算法G-Boost和深度學(xué)習(xí)模型Mask R-CNN,實(shí)現(xiàn)了小麥籽粒損傷分類與DON含量的關(guān)聯(lián)分析(圖15)。結(jié)果表明,G-Boost在光譜特征分類中表現(xiàn)*優(yōu),訓(xùn)練集準(zhǔn)確率達(dá)97%,可有效區(qū)分健康、低DON(<0.5 ppm)與高DON(>1.5 ppm)籽粒;Mask R-CNN在實(shí)例分割中平均精度(mAP)達(dá)0.97,結(jié)合閾值法(70%病斑像素判定為病粒)后,DON含量與病粒數(shù)量回歸分析的決定系數(shù)(R2)提升至0.75。該研究驗(yàn)證了高光譜成像結(jié)合多模態(tài)機(jī)器學(xué)習(xí)模型在農(nóng)業(yè)毒素在線檢測中的潛力,為糧食加工環(huán)節(jié)的快速質(zhì)量評(píng)估提供了技術(shù)參考。
圖15 研究流程圖
Zhang et al. (2021) 提出了一種基于多角度近紅外高光譜成像技術(shù)(波長范圍973–1657 nm)結(jié)合機(jī)器學(xué)習(xí)的方法,用于高效識(shí)別米象蟲(Sitophilus oryzae L.)損害的小麥籽粒。通過采集小麥籽粒四個(gè)側(cè)面的高光譜數(shù)據(jù),結(jié)合標(biāo)準(zhǔn)正態(tài)變量變換(SNV)預(yù)處理、連續(xù)投影算法(SPA)特征提取與線性判別分析(LDA)建模,構(gòu)建了SNV-SPA-LDA混合模型。實(shí)驗(yàn)結(jié)果表明,該模型在外部驗(yàn)證中分類準(zhǔn)確率、靈敏度和特異性分別達(dá)到97%、98%和96%,顯著優(yōu)于傳統(tǒng)單點(diǎn)光譜或單角度成像方法。研究強(qiáng)調(diào)了多角度數(shù)據(jù)采集對(duì)捕捉蟲洞隨機(jī)分布特征的重要性,并揭示了淀粉和蛋白質(zhì)相關(guān)光譜波段(如1140–1200 nm和1550–1610 nm)在損傷檢測中的關(guān)鍵作用。該方法為開發(fā)多光譜在線檢測系統(tǒng)提供了理論依據(jù),未來可進(jìn)一步結(jié)合小麥品種、產(chǎn)地等因素優(yōu)化模型普適性
圖16 研究流程圖
Yang et al. (2020) 基于高光譜成像(HSI)與堆疊稀疏自動(dòng)編碼器(SSAE)算法,提出了一種貯藏玉米粒霉變狀態(tài)的早期無損檢測方法。通過對(duì)285個(gè)不同貯藏時(shí)間(0-40天)的玉米樣本(依據(jù)真菌孢子數(shù)劃分為健康、輕度、中度、重度霉變四類)進(jìn)行高光譜數(shù)據(jù)(400-1000 nm)采集,結(jié)合SSAE網(wǎng)絡(luò)提取光譜非線性特征,并對(duì)比傳統(tǒng)特征選擇算法(VCPA、RF)及多種分類器(KELM、ELM、SVM)構(gòu)建識(shí)別模型。結(jié)果表明,SSAE-KELM模型表現(xiàn)*優(yōu),訓(xùn)練集與測試集平均分類準(zhǔn)確率分別達(dá)97.36%和96.84%,敏感性與特異性均高于0.92。此外,研究通過像素級(jí)與物體級(jí)可視化技術(shù)直觀展示了不同霉變等級(jí)在玉米粒表面的分布特征(圖17)。該成果驗(yàn)證了深度學(xué)習(xí)方法在高光譜數(shù)據(jù)特征挖掘中的優(yōu)勢,為糧食倉儲(chǔ)中早期霉變的快速在線檢測提供了技術(shù)參考,并拓展了多模態(tài)特征融合在農(nóng)業(yè)無損檢測中的應(yīng)用潛力。
圖17基于像素級(jí)和對(duì)象級(jí)的玉米籽粒霉變等級(jí)可視化
Kang et al. (2022) 提出了一種基于高光譜成像技術(shù)(400–1000 nm)與協(xié)同聚類算法的無監(jiān)督玉米粒霉變檢測方法(圖18)。通過融合模糊C均值聚類(FCM)和譜聚類(SC)開發(fā)了FCM-SC算法,有效解決了傳統(tǒng)方法對(duì)標(biāo)記數(shù)據(jù)的依賴及復(fù)雜數(shù)據(jù)分布的分類難題。研究采用標(biāo)準(zhǔn)正態(tài)變量變換(SNV)和乘性散射校正(MSC)預(yù)處理光譜數(shù)據(jù),結(jié)合主成分分析(PCA)降維及二維Gabor紋理特征提取,實(shí)現(xiàn)了光譜與圖像信息的協(xié)同利用。實(shí)驗(yàn)表明,F(xiàn)CM-SC算法在準(zhǔn)確率(93.47%)、歸一化互信息(0.5885)和蘭德指數(shù)(0.8943)上顯著優(yōu)于傳統(tǒng)聚類算法(如K-means、GMM),且在不依賴標(biāo)記樣本的情況下,其性能超過監(jiān)督模型(如SVM、LDA)。該方法通過多階段聚類壓縮數(shù)據(jù)規(guī)模并保持非線性結(jié)構(gòu),為糧食質(zhì)量無損檢測提供了高效的無監(jiān)督解決方案,未來可進(jìn)一步優(yōu)化算法實(shí)時(shí)性與泛化能力
圖18 玉米籽粒霉變高光譜圖像檢測算法
總結(jié)與展望
高光譜成像技術(shù)結(jié)合光譜分析和圖像處理的優(yōu)勢,實(shí)現(xiàn)了糧食品質(zhì)的無損、快速、精準(zhǔn)檢測。近年來,該技術(shù)在多個(gè)方面取得重要進(jìn)展,包括:1)成分分析,利用高光譜數(shù)據(jù)定量檢測糧食中的水分、蛋白質(zhì)、脂肪、淀粉等營養(yǎng)成分,提高品質(zhì)監(jiān)測的科學(xué)性;2)品質(zhì)分級(jí),結(jié)合機(jī)器學(xué)習(xí)和深度學(xué)習(xí)方法,基于光譜特征對(duì)糧食品質(zhì)進(jìn)行自動(dòng)分級(jí),提高分選效率;3)霉變與污染檢測,通過識(shí)別霉變區(qū)域和真菌毒素污染,實(shí)現(xiàn)食品安全快速篩查;4)品種鑒別,基于高光譜特征提取,不同糧食品種可精準(zhǔn)分類;5)存儲(chǔ)和加工監(jiān)測,跟蹤糧食在存儲(chǔ)、加工過程中的品質(zhì)變化,如水分損失、氧化變質(zhì)等,以優(yōu)化儲(chǔ)存和加工條件。
未來,高光譜成像技術(shù)在糧食品質(zhì)檢測領(lǐng)域?qū)⑾蛑悄芑?、便攜化、多功能化方向發(fā)展。1)設(shè)備小型化與實(shí)時(shí)檢測,開發(fā)便攜式或在線檢測系統(tǒng),適用于生產(chǎn)線和現(xiàn)場檢測;2)多源信息融合,結(jié)合X射線、熱成像等技術(shù),提高檢測全面性和精度;3)深度學(xué)習(xí)與大數(shù)據(jù)分析,利用Transformer、CNN等優(yōu)化光譜數(shù)據(jù)處理,提高計(jì)算效率和模型泛化能力;4)標(biāo)準(zhǔn)化與產(chǎn)業(yè)化,建立統(tǒng)一的光譜數(shù)據(jù)處理方法和檢測標(biāo)準(zhǔn),推動(dòng)技術(shù)在糧食檢測行業(yè)的廣泛應(yīng)用;5)光譜特征優(yōu)化,研究高效波段選擇和特征提取方法,降低數(shù)據(jù)冗余,提高計(jì)算速度。未來,該技術(shù)將與人工智能、物聯(lián)網(wǎng)和自動(dòng)化結(jié)合,推動(dòng)糧食品質(zhì)檢測向高效、精準(zhǔn)、智能方向發(fā)展,為糧食安全提供更有力的技術(shù)支持。
參考文獻(xiàn)
An, T., Fan, Y., Tian, X., Wang, Q., Wang, Z., Fan, S., Huang, W., 2024. Green analytical assay for the viability assessment of single maize seeds using double-threshold strategy for catalase activity and malondialdehyde content. Food Chemistry. 455, 139889.
Dhakal, K., Sivaramakrishnan, U., Zhang, X., Belay, K., Oakes, J., Wei, X., Li, S., 2023. Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels, Sensors.
Han, L., Tian, J., Huang, Y., He, K., Liang, Y., Hu, X., Xie, L., Yang, H., Huang, D., 2024. Hyperspectral imaging combined with dual-channel deep learning feature fusion model for fast and non-destructive recognition of brew wheat varieties. Journal of Food Composition and Analysis. 125, 105785.
Huang, H., Hu, X., Tian, J., Peng, X., Luo, H., Huang, D., Zheng, J., Wang, H., 2022. Rapid and nondestructive determination of sorghum purity combined with deep forest and near-infrared hyperspectral imaging. Food Chemistry. 377, 131981.
Kang, Z., Huang, T., Zeng, S., Li, H., Dong, L., Zhang, C., 2022. A Method for Detection of Corn Kernel Mildew Based on Co-Clustering Algorithm with Hyperspectral Image Technology, Sensors.
Long, Y., Wang, Q., Tang, X., Huang, W., Zhang, B., 2025. Detection of starch content in maize kernel based on Raman hyperspectral imaging technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 336, 126025.
Makmuang, S., Terdwongworakul, A., Vilaivan, T., Maher, S., Ekgasit, S., Wongravee, K., 2023. Mapping hyperspectral NIR images using supervised self-organizing maps: Discrimination of weedy rice seeds. Microchemical Journal. 190, 108599.
Qi, H., Huang, Z., Jin, B., Tang, Q., Jia, L., Zhao, G., Cao, D., Sun, Z., Zhang, C., 2024. SAM-GAN: An improved DCGAN for rice seed viability determination using near-infrared hyperspectral imaging. Computers and Electronics in Agriculture. 216, 108473.
Qiao, M., Cui, T., Xia, G., Xu, Y., Li, Y., Fan, C., Han, S., Dong, J., 2024. Integration of spectral and image features of hyperspectral imaging for quantitative determination of protein and starch contents in maize kernels. Computers and Electronics in Agriculture. 218, 108718.
Song, Y., Cao, S., Chu, X., Zhou, Y., Xu, Y., Sun, T., Zhou, G., Liu, X., 2023. Non-destructive detection of moisture and fatty acid content in rice using hyperspectral imaging and chemometrics. Journal of Food Composition and Analysis. 121, 105397.
Xuan, G., Jia, H., Shao, Y., Shi, C., 2024. Protein content prediction of rice grains based on hyperspectral imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 320, 124589.
Xue, H., Xu, X., Yang, Y., Hu, D., Niu, G., 2024. Rapid and Non-Destructive Prediction of Moisture Content in Maize Seeds Using Hyperspectral Imaging, Sensors.
Yang, D., Yuan, J., Chang, Q., Zhao, H., Cao, Y., 2020. Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm. Infrared Physics & Technology. 109, 103412.
Yang, D., Zhou, Y., Jie, Y., Li, Q., Shi, T., 2024. Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 313, 124166.
Zhang, L., Sun, H., Li, H., Rao, Z., Ji, H., 2021. Identification of rice-weevil (Sitophilus oryzae L.) damaged wheat kernels using multi-angle NIR hyperspectral data. Journal of Cereal Science. 101, 103313.
Zhang, L., Wei, Y., Liu, J., An, D., Wu, J., 2024. Maize seed fraud detection based on hyperspectral imaging and one-class learning. Engineering Applications of Artificial Intelligence. 133, 108130.
Zhu, H., Yang, R., Lu, M., Shi, W., Sun, W., Lv, D., Liu, H., Wu, Q., Jiang, X., Han, Z., 2025. Identification of maize seed vigor under different accelerated aging times using hyperspectral imaging and spectral deep features. Computers and Electronics in Agriculture. 231, 109980.
相關(guān)產(chǎn)品
-
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。